
On Differentials of Functions in

only certain cases *

Leonhard Euler

§337 If y was any function of x and this variable quantity is increased by the
increment ω that x goes over into x + ω, then the function will have this value

y +
ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 +

ω4d4y
24dx4 + etc.

and hence will receive this increment

ωdy
dx

+
ω2ddy
2dx2 +

ω3d3y
6dx3 +

ω4d4y
24dx4 + etc.,

as we showed above [§ 48]. Therefore, if it is ω = dx such that x grows by the
amount of its differential dx, then the function y will receive the increment

= dy +
1
2

ddy +
1
6

d3y +
1
24

d4y + etc.,

which will be the true differential of y. But since any arbitrary term of this
series has an infinite ratio to the following, with respect to the first all vanish
such that dy taken in usual manner yields the true differential of y. In like
manner the true second, third, fourth etc. differentials of y will be as follows
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doctrina serierum, 1755“, reprinted in in „Opera Omnia: Series 1, Volume 10, pp. 542 - 563 “,
Eneström-Number E212, translated by: Alexander Aycock for the „Euler-Kreis Mainz“
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dd.y = ddy +
3
3

d3y +
7

3 · 4d4y +
15

3 · 4 · 5d5y +
31

3 · 4 · 5 · 6 d6y + etc.

d3.y = d3y +
6
4

d4y +
25

4 · 5d5y +
90

4 · 5 · 6d6y +
301

4 · 5 · 6 · 7 d7y + etc.

d4.y = d4y +
10
5

d5y +
65

5 · 6d6y +
350

5 · 6 · 7d7y +
1701

5 · 6 · 7 · 8 d8y + etc.

d5.y = d5y +
15
6

d6y +
140
6 · 7d7y +

1050
6 · 7 · 8d8y +

6951
6 · 7 · 8 · 9 d9y + etc.

d6.y = d6y +
21
7

d7y +
266
7 · 8d8y +

2646
7 · 8 · 9d9y +

22827
7 · 8 · 9 · 10

d10y + etc.

etc.

which follow from § 56, if one puts dx instead of ω. Therefore, those dif-
ferentials of y will be complete, in which not even the terms which vanish
with respect to the first are neglected. But these single terms are found, if the
function y is continuously differentiated and dx was put to be constant. So
having put y = ax− xx because of

dy = adx− 2xdx and ddy = −2dx2,

the complete differentials of y will be

dy = adx− 2xdx− dx2, ddy = −2dx2;

the following are all zero.

§338 Although in general in these expressions of the differentials the follo-
wing terms with respect to the first are considered to be zero, nevertheless
in special cases in which the first term itself vanishes this assumption is not
valid and the second term cannot be neglected anymore. So, even though in
the preceding example the differential of the formula y = ax− xx in general
is = (a− 2x)dx having neglected the term −dx2, which certainly is infinitely
smaller than the first (a− 2x)dx, here nevertheless this condition that the first
term does not vanish per se, is considered to be fulfilled. Therefore, if the
differential of y = ax− xx is in question in the case in which x = 1

2 a, then
one has to say that it is = −dx2; if the variable x grows by the differential
dx, then the decrement of the function y in the case x = 1

2 a will be dx2. But,
having excluded this single case, the differential of the function y will always
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be = (a− 2x)dx; for, if it is not x = 1
2 a, the second term −dx2, with respect

to the first, is always correctly neglected. And the negligence of the term dx2

cannot induce an error even in the case x = 1
2 a; for, the first differentials are

usually compared to each other; hence, because dy = −dx2 in the case x = 1
2 a

vanishes in comparison to the first differentials dx, it does not matter, whether
in this case we have dy = 0 or dy = −dx2.

§339 While y denotes any function of x, let, having taken the continued
differentials, be

dy = pdx, dp = qdx, dq = rdx, dr = sdx etc.

Hence, the complete differentials in which nothing is neglected of y will be

d.y = pdx +
1
2

q dx2 +
1
6

r dx3 +
1
24

sdx4 +
1

120
tdx5 + etc.

d2.y = qdx2 + r dx3 +
7
12

sdx4 +
1
4

t dx5 + etc.

d3.y = rdx3 +
3
2

s dx4 +
5
4

t dx5 + etc.

d4.y = sdx4 + 2t dx5 + etc.

d5.y = tdx5 + etc.

etc.

Therefore, if the first terms of these expressions do not vanish, they alone will
exhibit the differentials of y; but, if in a certain case the first term becomes
= 0, then the following will express the differential in question. And if also
the second term vanishes, then the third term will yield the value of the
differential in question; but if even this term vanishes, the fourth, and so forth.
Therefore, it is understood that the first differential of any function of x ever
vanishes completely; for, even though it is p = 0 in which case sy is usually
considered to vanish, this differential will then be expressed by means of a
higher power of dx, as, e.g., either by means of 1

2 qdx2 or, if also q = 0, by
means of 1

6 rdx3, and so forth.

§340 But although in these cases the differential of y with respect to higher
first differentials it is compared to is correctly neglected and considered to be
zero, it is nevertheless often helpful to know also its true expression. For, from
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the complete form of the differential it is immediately seen in which cases the
given function has a maximum or minimum value. For, if it was

d.y = pdx +
1
2

qdx2 +
1
6

rdx3 + etc.,

for y to have a maximum or minimum value it is necessary that p = 0;
therefore, in this case it will be dy = 1

2 qdx2 and the function y, if one puts x±
dx instead of x, goes over into y + 1

2 qdx2 and will therefore have a minimum
value, if q has a positive value, but maximum value, if q has a negative value.
But if at the same time q = 0, it will be dy = 1

6 rdx3 and the function will go
over into y± 1

6 rdx3 by putting x± dx instead of x and in this case neither a
maximum nor a minimum value results; but if also r = 0, then having put
x± dx instead of x the function y will become = y + 1

24 sdx4, which exhibits a
maximum, if s was a negative quantity, a minimum on the other hand, if s is
a positive quantity. Other occasions in which the complete expression of the
differentials have a use will occur below.

§341 Let us put that p vanishes in the case x = a what happens, if it was
p = (x− a)P. But such a value results, if it was

y = (x− a)2P + C

while C denotes any constant quantity. For, because it is

pdx = (x− a)2dP + 2(x− a)Pdx,

it will certainly be p = 0 having put x = a. Therefore, then because of

dpdx = qdx2 = (x− a)2ddP + 4(x− a)dPdx + 2Pdx2

having put x = a it will be qdx2 = 2Pdx2 and the complete differential in this
case x = a will be

dy = Pdx2,

if not by accident also P vanishes for x = a which cases I will contemplate
later.

But the present case can be exhibited more generally this way. Let

z = (x− a)2P + C
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and let y be any function of z such that dy = Zdz while Z denotes any function
of z = (x− a)2P + C. Therefore, it will be

dz = (x− a)2dP + 2(x− a)Pdx and pdx = Z(x− a)2dP + 2Z(x− a)Pdx,

which term becomes = 0, if x = a; and in the same case having neglected the
terms which contain the factor x− a it will be qdx2 = 2PZdx2 and hence in
the case x = a it will be dy = PZdx2, after in PZ it was put a for x everywhere.
Hence, if y was any function of z = (x− a)2P + C such that it is dy = Zdz, in
the case x = a the differential will be

dy = PZdx2.

Therefore, this function y has maximum value in the case x = a, if in the same
case PZ was a negative quantity, a minimum value on the other hand, if PZ
was a positive quantity.

§342 If it was p = (x− a)2P, in the case x = a also q vanishes; but such an
expression results for p, if it was

y = (x− a)3P + C.

Therefore, it will be

pdx = (x− a)2dP + 3(x− a)Pdx,

qdx2 = (x− a)3ddp + 6(x− a)2dPdx + 6(x− a)Pdx2,

of which both sides vanish in the case x = a; but the following will be

rdx3 = (x− a)3d3P + 9(x− a)2ddpdx + 18(x− a)dPdx2 + 6Pdx3 = 6Pdx3

having put x = a. Hence, because p and q vanish in the case x = a, it will be

dy =
1
6

rdx3 = Pdx3.

In like manner, if one puts

z = (x− a)3P + C
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and y was any function of z such that it is dy = Zdz, because of

dz = (x− a)3dP + 3(x− a)2Pdx

it will also be p = 0 and q = 0 and it will be rdx3 = 6PZdx3; hence, in the
case x = a it will be

dy = PZdx3.

Therefore, this function y, even though in the case x = a it is p = 0, will
nevertheless have neither a maximum nor minimum value.

§343 These differentials can be found more easily from the nature of the
differentials itself. For, since the differential of y results, if y is subtracted from
the closest following state which results, if one puts x + dx instead of x, let us
in the first case, in which it was

y = (x− a)2P + C,

put x + dx instead of x and it will be

yI = (x− a + dx)2PI + C,

whence it will be

dy = (x− a + dx)2PI − (x− a)P.

Therefore, in the case in which it is x = a it will be dy = PIdx2, and because
PI and P have the ratio of 1, it will be

dy = Pdx2.

In like manner, if it was

z = (x− a)2P + C,

it will be dz = Pdx2; hence, if y is any function of z such that dy = Zdz, it will
be

dy = PZdx2

in the case in which one puts x = a.
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Further, if it is

z = (x− a)3P + C,

it will be zI = (x− a + dx)3PI + C and therefore in the case x = a it will be

zI − z = dz = Pdx3.

Hence, if y was any function of z and dy = Zdz, the differential in the case
x = a will also be

dy = PZdx3,

if in the functions P and Z one substitutes a for x everywhere. Since in this
case it is z = C and Z is a function of z, Z will become a constant quantity,
such a function of C, of course, as it was one of z before.

§344 Therefore, if it was in general

y = (x− a)nP + C,

since it is

yI = (x− a + dx)nPI + C,

in the case x = a it will be

dx = Pdxn;

whence, if it was n > 1, this differential will vanish compared to the higher
first differentials which are homogeneous to dx. Therefore, from the preceding
it is obvious that the function y has a maximum or minimum value in the
case x = a, if n was an even number; for, then, if having put x = a P becomes
a positive quantity, y will have a minimum; but if P was a negative quantity,
y will have a maximum. And this way the nature of maxima and minima is
found a lot easier than by using the method explained above, since it is not
necessary to consider higher differentials. If it is

z = (x− a)nP + C

and y was any function of z that dy = Zdz, in the case x = a the differential
will be
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dy = PZdxn.

But it is to be noted that here n it to be taken positively or greater than 0; for,
if n was a negative number, then (x− a)n would not vanish for x = 0, as we
assumed, but would even become infinitely large.

§345 Now, we saw that this way the differential can be found a lot more
convenient than by means of the series by means of which we expressed the
complete differential before; for, if n was an integer number, so many terms of
that series have to be considered as n contains unities. But if n was a fractional
number, then this series will not even ever exhibit the true differential. For, let
us put that it is

y = (x− a)
3
2 + a

√
a;

if we consider the series

dy = pdx +
1
2

qdx2 +
1
6

rdx3 +
1
24

dx4 + etc.,

it will be

p =
3
2
√

x− a, q =
3

4
√

x− a
, r =

−3
8(x− a)

√
x− a

,

s =
9

16(x− a)2
√

x− a
etc.

Hence, if one puts x = a, it will be p = 0, but all following terms q, r, s etc.
will become infinite; hence, the value of the differential dy cannot be defined
in this case at all. But the method deduced from the nature of differentials
leaves no doubt. For, because it is y = (x − a)

3
2 + a

√
a, having put x + dx

instead of x it will be yI = (x− a + dx)
3
2 + a

√
a and, if one puts x = a, it will

be dy = dx
√

dx. Therefore, this differential vanishes with respect to dx; but
the second differentials on the other hand homogeneous to dx2 will vanish
with respect to the latter.

§346 Let us expand these cases in which the exponent n is a fractional
number a little more accurately and let be

y = P
√

x− a + C;
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because of yI = PI
√

x− a + dx + C it will be

dx = P
√

dx

in the case x = a; therefore, this differential will have an infinite ratio to dx
and to the differentials homogeneous to dx . Hence it is also plain, what is
to be said about the nature of maxima and minima in this case. For, because
having put a + dx instead of x y goes over into

C + P
√

dx,

because of the ambiguous
√

dx the function y will obtain two values; the one
greater than C, which it receives for x = a, the other smaller; hence in the case
x = a it will have neither a maximum nor a minimum value. Furthermore,
if dx is taken negatively, then the value of y will even become imaginary.
The same is to said, if z = P

√
x− a + C and y is any function of z that it is

dy = Zdz; for, then it will be dy = PZ
√

dx in the case x = a.

§347 If this function was propounded

y = (x− a)
m
n P + C,

whose differential is in question in the case x = a, it will, as we concluded
from the preceding, be

dy = Pdx
m
n .

Therefore, if it was m > n, this differential will vanish with respect to dx;
but if it is m < n, the ratio dy

dx will be infinitely large. Furthermore, if n is an
even number, the differential will have two values, the one positive, the other
negative; and so the function y which in the case x = a becomes = C, if one
puts x = a+ dx, will have two values, the one greater than C, the other smaller;
but if one would put x = a− dx, then y would even become imaginary; hence,
in this case y would become neither a maximum nor a minimum. Now, let us
put that the denominator n is an odd number; the numerator m will either
be even or odd. Let m be an even number at first; since dy retains the same
value, no matter whether dx is taken positively or negatively, it is perspicuous
that the function y in the case x = a has either a maximum or minimum value
depending on whether in this case P was a negative or positive quantity. But
if both numbers m and n were odd, the differential dy will go over into its
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negative having put dx to negative; and therefore, the function y will have
neither a maximum nor a minimum in this case, if one puts x = a.

§348 If the function y consists of several terms of this kind, of which the
single ones are divisible by x− a such that it is

y = (x− a)mP + (x− a)nQ + C,

then its differential in the case x = a will be

dy = Pdxm + Qdxn;

in this expression, if it was n > m, the second term vanishes in comparison to
the first such that only dy = Pdxm results. But if n was a fraction having an
even denominator, then, even though Qdxn vanishes with respect to Pdxm, it
can nevertheless not be completely neglected. For, from this it is clear, if dx is
taken negatively, that the value of dy becomes imaginary, whereas from the
first term Pdxm only this is not plain. Therefore, since, if n is a fraction having
an even denominator, dx cannot be taken negatively, but if it is taken positively,
the term Qdxn yields two values, the function y = (x− a)mP + (x− a)nQ + C
which in the case x = a becomes = C, if x = a + dx, will be

y = C + Pdxm ±Qdxn;

since both of these values are either greater or smaller than C, depending on
whether P was a positive or a negative quantity, the function y in the case
x = a will have either a minimum or a maximum value of the second kind
[§278].

§349 Therefore, in the cases the true differentials of functions cannot be
found by means of the usual rules for differentiation; these are only applicable,
if the differential of the function is homogeneous to dx. But if in a singular
case the differential of the function is expressed by means if its power dxn,
then the rule yields 0 for this differential, if n was a number greater than 1;
but it on the other hand exhibits an infinitely larger differential, if n is an
exponent smaller than 1. So if the differential of y =

√
a− x is in question in

the case x = a, since it is dy = − dx√
a−x , having put x = a dy = − dx

0 results.
And if we wanted to derive the following differentials, all of them because
of the denominators = 0 grow to infinity in the same way such that nothing
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can be concluded from this. But we saw that in this case it is dy =
√
−dx and

hence imaginary. But if one puts x− dx instead of x, it will be dy =
√

dx and
hence it will be infinitely larger than dx such that dx vanishes with respect to
dy. Hence, the usual rule even in this case does not cause any errors, since it
exhibits the infinite value of dy.

§350 Therefore, one must not apply the usual rule, if in the series

pdx +
1
2

qdx2 +
1
6

rdx3 + etc.,

expressing the complete differential of the function y, the first term p either
becomes = 0 or infinite, and in this case the differential must be derived
from the first principles. Therefore, if the differential corresponding to a
given value of x of the function y, for which the letter p becomes either
infinitely small or infinitely large, is in question, one has to go back to the
first principles of differentiation. In all remaining cases in which neither p = 0
nor p = ∞ the usual rule will yield the true values of the the differential.
Nevertheless, the case mentioned before (§ 348) is not to be neglected, if the
function y contains a term of the form (x− a)nQ while n is fraction having
an even denominator; for, even though one has lower differentials than Qdxn

with respect to which this one vanishes nevertheless, since Qdxn, if dx is
negative, becomes imaginary, this term Qdxn transforms all remaining ones,
with respect to which it vanishes, also into imaginary ones; this circumstance
is especially to be considered in the case of curves. Therefore, I will explain
some particular cases in which the true differential is not indicated by the
common rule in the following examples.

EXAMPLE 1

Let the differential of the function y = a + x −
√

xx + ax− x
√

2ax− xx be in
question in the case in which one puts x = a.

It is plain that the differential of this function x = a is not found by means of
the usual rule; for, it is

dy = dx +
−xdx− 1

2 adx + 1
2 dx
√

2ax− xx + (axdx− xxdx) :
√

2ax− xx√
xx + ax− x

√
2ax− xx

;
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for, having put x = a it will be dy = dx− adx
a = 0. Therefore, let us start from

the principles of differentiation and at first having put x + dx instead of x it
will be

yI = a + x + dx

−
√

xx + 2xdx + dx2 + ax + adx− (x + dx)
√

2ax− xx + 2adx− 2xdx− dx2

But having put x = a it will be

yI = 2a + dx−
√

2aa + 3adx + dx2 − (a + dx)
√

aa− dx2.

Now, because it is
√

aa− dx2 = a − dx2

2a (for, the following terms can be
neglected, since not all which are infinitely larger will be cancelled, as it will
be seen soon), it will be

yI = 2a + dx−
√

aa + 2adx +
3
2

dx2

and further by extracting the root it will be

yI = 2a + dx−
(

a + dx +
dx2

4a

)
= a− dx2

4a
.

But in the case x = a it will be y = a; hence, because it is yI = y + dy, one will
obtain

dy = −dx2

4a
;

from this it is at the same time seen that the propounded function y becomes
imaginary, if one puts x = a.

EXAMPLE 2

To find the differential of this function y = 2ax − xx + a
√

aa− xx in the case in
which one puts x = a.

Having differentiated it in the usual way it is

dy = 2adx− 2xdx− axdx√
aa− xx

,
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which for x = a goes over into infinity and hence is not indicated this way. But
the differentials of the following orders in a like manner will become infinite
such that from them not even from the series pdx + 1

2 qdx2 + 1
6 rdx2 + etc. the

true value of the differential can be found. Therefore, let us put x + dx instead
of x and we will have

yI = 2ax− xx + 2adx− 2xdx− dx2 + a
√

aa− xx− 2xdx− dx2

and having put x = a it will be

yI = aa− dx2 + a
√
−2adx− dx2.

But in the same case it is y = aa; therefore, it will be dy = −dx2 + a
√
−2adx,

and since dx2 vanishes with respect to
√
−2adx, it will be

dy = a
√
−2adx.

Hence, if the differential dx is taken positively, dy will be imaginary; but if
one writes x− dx for x, it will be

dy =
√

2adx;

because its value is a double value, the one positive, the other negative, the
function y will have neither a maximum nor minimum value in the case x = a.

EXAMPLE 3

To find the differential of the function y = 3aax− 3axx + x3 + (a− x) 3
√

a3 − x3 in
the case in which one puts x = a.

Since this function is transformed into this form

y = a3 − (a− x)3 + (a− x)
7
3 3
√

aa + ax + xx,

having put x = a + dx it is

yI = a3 + dx3 − dx
7
3

3
√

3aa

and in the same case it is y = a3. Therefore, it will be dy = dx3 − dx
7
3

3
√

3aa,
and because dx3 vanishes with respect to to dx

7
3 , it will be

dy = −dx
7
3

3
√

3aa;
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therefore, in the case x = a the function y has neither a maximum nor a
minimum value.

EXAMPLE 4

To find the differential of the function y +
√

x +
4
√

x3 = (1 + 4
√

x)
√

x in the case
x = 0.

Since the case x = 0 is propounded and for it it is y = 0, only write dx instead
of x and one will have

dy = dx
1
2 + dx

3
2 or dy = (1 + 4

√
dx)
√

dx;

hence, at first it is plain that dx cannot be taken negatively. But then, even
though

√
dx has a double value, the one positive, the other negative, nevert-

heless in this case, since its root 4
√

dx occurs, only the positive value can be
taken. But 4

√
dx has both meanings and it will be

dy =
√

dx± 4
√

dx3 and yI = 0 +
√

dx± 4
√

dx3

because of y = 0. Because both values of yI are greater than y, it follows that
in the case x = 0 y has a minimum value. But that the function y =

√
x +

4
√

x3

does not contain this one −
√

x +
4
√

x3, will become plain by reducing both
to rational expressions. For, the first reduced this form y −

√
x = 4

√
x and

squared gives y2 − 2y
√

x + x = x
√

x or y2 + x = (x + 2y)
√

x which squared
again yields

y4 − 2yyx− 4xxy + xx− x3 = 0

The other y +
√

x =
4
√

x3 will give y2 + x = (x− 2y)
√

x and further

y4 − 2yyx + 4xxy + xx− x3 = 0,

which is different from the first. But on the other hand, the term 4
√

x3 retains
the ambiguity of the sign. Therefore, this circumstance is to be considered
in detail, that, even though in general the roots of even powers include both
signs + and −, nevertheless this ambiguity does not occur, if in the same
expression higher roots of even powers of the same roots occur; these would
be imaginary, if the first roots would be taken negatively. And from this source
maxima and minima of the second kind follow, whenever such might not
seem to occur.
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EXAMPLE 5

To find the differential of the function

y = a +
√

x− f + (x− f ) 4
√

x− f + (x− f )2 8
√

x− f

in the case in which one puts x = f .

Let us put x− f = t, and because it is y = a+
√

t+ t 4
√

t+ tt 8
√

t, the differential
of this expression is in question in the case t = 0 in which it is y = a. Therefore,
having put t + dt or 0 + dt instead of t it will be

yI = y + dy = a +
√

dt + dt 4
√

dt + dt2 8
√

dt

and hence one will have

dy =
√

dt + dt 4
√

dt + dt2 8
√

dt.

Here, at first it is plain that the differential cannot be taken negatively, for,
otherwise dy would become imaginary. But then not only

√
dt, but even 4

√
dt

cannot be taken negatively; for, 8
√

dt would become imaginary; hence the
differential dy has only the double value

dy =
√

dt + dt 4
√

dt± dt2 8
√

dt;

because both values a greater than zero, it follows that the function y has a
minimum value of the second kind for t = 0 or x = f . Although in these
cases the terms dt 4

√
dt and dt2 8

√
dt vanish with respect to the first

√
dt, it

is nevertheless to be taken into account, if the multiplicity of the values is
considered, that the imaginary quantities are avoided.

EXAMPLE 6

To find the differential of the function y = ax + bxx + (x− f )n + (x− f )m+ 1
2 in

the case x = f .

If one puts x = f , it will be y = a f + b f f , and if one puts x + dx or f + dx
instead of x, the closest value will result as

yI = a f + b f f + adx + 2b f dx + bdx2 + dxn + dxm+ 1
2 n,

such that it is
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dy = adx + 2b f dx + bdx2 + dxn + dxm
√

dxn.

Therefore, if n is not an even number, the differential dx cannot be taken
negatively. But the last term dxm

√
dxn has an ambiguous sign; therefore, yI

will have two value, both greater than the one of y, if a + 2b f was a positive
quantity and the exponents n and m + 1

2 n were greater than 1. Therefore, the
value of the function y in the case x = f will be a minimum and this happens,
whether n is an integer number or a fraction, as long as only the numerator
was not also an even number in that case.

§351 But this method to deduce differentials from the principles themselves
especially has use in the case of transcendental functions, since in certain
cases the differential found in the usual way either vanishes or seems to
grow to infinity. But here species of the infinite and the infinitely small of
such a kind appear which are not found in algebraic functions. For, because,
if i denotes an infinite number, ln i is also infinite, but nevertheless has an
infinitely small ratio to the number i and even to any power in, no matter how
small the exponent n is set, the fraction ln i

in will be infinitely small and cannot
be finite, unless the exponent n becomes infinitely small. Therefore, ln i will
be homogeneous to in, if the exponent n was infinitely small. Now let us put
i = 1

ω while ω is an infinitely small quantity; − ln ω will be homogeneous to
1

ωn , if the exponent n is infinitely small, and hence − 1
ln ω will be homogeneous

to ωn; and hence, − 1
ln dx will be infinitely small compared to dxn, while n is

an infinitely small fraction. So, if it was y = − 1
ln x , the differential of y in the

case x = 0 will be = − 1
ln dx = dxn and hence dy will have an infinite ratio to

dx and to any power of dx; and with respect to − 1
ln dx completely all powers

of dx vanish, no matter how small their exponents were.

§352 Further, we also saw, if a was a number greater than 1 and i was infinite,
that then ai will be infinite of such a high degree that with respect to it not
only i but also any power of i vanishes; and in does not become homogeneous
to ai before the exponent n was augmented to infinity. Now, let i = 1

ω such
that ω denotes the infinitely small; a

1
ω will be homogeneous to 1

ωn while n
denotes an infinitely large number and hence a

−1
ω or 1

a1:ω will be infinitely
large compared to ωn. Therefore, 1

a1:dx will be infinitely small, but vanishes
with respect to all powers of dx, because it is homogeneous to the power dxn,
while n is an infinitely large number. Hence, if the differential of y = 1

a1:x is in

16



question in the case x = 0, since it is y = 0, it will be dy = 1
a1:dx and hence is

infinitely smaller than each power of dx.

§353 But if a was a number smaller than 1, then, because 1
a becomes larger

than 1, the question is reduced to the preceding case. If one has the expression
a

1
ω , by putting a = 1 : b it will be transformed into b−

1
ω or 1

b1:ω which because
of b > 1 will be homogeneous to ωn while n denotes any infinitely large
number. Therefore, having mentioned these things in advance, we will be able
to resolve the following examples.

EXAMPLE 1

To find the differential of the function y = xx− 1
ln x in the case x = 0.

Since for x = 0 it is y = 0, if we put x + dx or 0 + dx instead of x, it will be

yI = dy = dx2 − 1
ln dx

.

But because − 1
ln dx is homogeneous to dxn while n denotes an infinitely small

number, with respect to it dx2 will vanish and it will be

dy = − 1
ln dx

= dxn.

But because the logarithms of negative numbers are imaginary, dx cannot
be taken negatively and therefore in the case x = 0 the function y will have
a minimum value, but a minimum extending neither to the first nor the
second kind. It certainly does not extend to the first kind, since y has not
preceding very close values, but is only smaller than the following values, if x
is set greater than zero. But it also does not extend to second kind, since the
following value to which it is compared are not double values; and therefore
a third kind of maxima and minima results that only occurs in logarithmic
and transcendental functions, but never occurs in algebraic functions; this will
be treated in the following part on curves in more detail.

EXAMPLE 2

To find the differential of the function y = (a− x)n − xn(ln a− ln x)n in the case in
which it is x = a.

17



This differential, if n is not an integer number, can be found from the general
formula

dy = pdx +
1
2

qdx2 +
1
6

rdx3 + etc.;

for, it will be

pdx = −n(a− x)n−1dx− nxn−1dx(ln a− ln x)n + nxn−1(ln a− ln x)n−1dx,

which value having put x = a vanishes; for, even if n = 1, it will be

pdx = −dx + dx = 0.

Therefore, if we proceed further, it will be

1
2

qdx2 =
n(n− 1)

1 · 2 (a− x)n−2dx2− n(n− 1)
1 · 2 xn−1dx2(ln a− ln x)n +

n2

2
xn−2dx2(ln a− ln x)n−1

+
n(n− 1)

1 · 2 xn−2dx2(ln a− ln x)n−1 − n(n− 1)
1 · 2 dx2(ln a− ln x)n−2.

Hence, if it was n = 1, it will be 1
2 qdx2 = dx2

2a for x = a. In like manner, if n = 2,
one would have to proceed up to the term 1

6 rdx3 and so fourth. Therefore, one
will more conveniently use the principles of differentiation, and because for
x = a it is y = 0, if we put x + dx or a + dx instead of x, it will be

yI = (−dx)n − (a + dx)n(ln a− ln(a + dx))n = y + dy = dy

because of y = 0. But it is

ln(a + dx) = ln a +
dx
a
− dx2

2a2 +
dx3

3a3 − etc.,

whence it is

dy = (−dx)n−
(

an + nan−1dx +
n(n− 1)

1 · 2 an−2dx2 + etc.
)(
−dx

a
+

dx2

2a2 −
dx3

3a3 + etc.
)n

=
n
2a

(−dx)n+1.
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Therefore, in the case x = a the differential dy in question of the propounded
formula will be as follows:

if n = 1 dy =
dx2

2a
, as we found before

if n = 2 dy = − 2dx3

2a

if n = 3 dy =
3dx4

2a

if n = 4 dy = − 4dx5

2a

etc. etc.

Therefore, if n was an odd number, the function in the case x = a has a mini-
mum value, but if n is an even number, neither a maximum nor a minimum
value; the same holds, if n was a fraction having an odd denominator. But if n
was a fraction having an even denominator, then dx has to be taken negatively,
so that we do not get to imaginary quantities; and because of the ambiguous
meaning the function will also have neither a maximum value nor a minimum
value.

EXAMPLE 3

To find the differential of the function y = xx in the case x = 1
e where e denotes the

number whose hyperbolic logarithm is = 1.

Since in general it is dy = xxdx(ln x + 1), this differential in the case x = 1
e or

ln x = −1 vanishes. Therefore, compare this differential to the general form
pdx + 1

2 qdx2 + etc.; it will be

p = xx(ln x + 1) and q = xx(ln x + 1)2 + xx−1

and having put ln x = −1 or x = 1
e it will be

q =

(
1
e

) 1−e
e

= e
e−1

e .

Therefore, the differential in question will be

dy =
1
2

e(e−1):edx2
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and therefore the function y = xx will have a minimum value in the case
x = 1

e .

EXAMPLE 4

To find the differential of this function y = xn + e−1:x in the case in which it is x = 0.

Since for x = 0 it is y = 0, if one puts x = 0 + dx, it will be

yI = dy = dxn +
1

e1:dx .

But we saw that 1
e1:x is homogeneous to the infinite power of dx or to dx∞ and

hence will vanish with respect to dxn such that it is

dy = dxn.

§354 What happens in the first differentials in certain cases, namely, that
they are not found by means of the usual rules of differentiation, also happens
in differentials of the second and third and higher order in the cases in which
in the complete differential form

d.y = pdx +
1
2

qdx2 +
1
6

rdx3 +
1
24

sdx4 + etc.

some of the quantities q, r, s etc. either vanish or become infinite. Because it is
[§ 339]

dd.y = qdx2 + rdx3 +
7
12

sdx4 + etc.,

if in which case it is q = 0, then it will be ddy = rdx3; but if in the same case
also r vanishes, then from this series the second differential cannot be found
at all, but one will have to go back to the principles of differentials; by putting
x + dx instead of x find the value yI and by putting x + 2dx instead of x find
the value of yII having done which the true value of the second differential
will be

ddy = dyI − dy = yII − 2yI + y.

If in like matter the question is about the third differential, then furthermore
write x + 3dx instead of x in y and having found the value yIII it will be
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d3y = yIII − 2yII + 3yI − y

and so fourth. We will illustrate these cases in the following examples.

EXAMPLE 1

To find the second differential of the function y = aa−xx
aa+xx in the case is which one puts

x = a√
3
.

Investigating the complete differential of y from the form

dy = pdx +
1
2

qdx2 +
1
6

rdx3 +
1

24
sdx4 + etc.

the following values will result for p, q, r, s etc.

p = − 4aax
(aa + xx)2 , q =

−4a4 + 12aaxx
(aa + xx)3 and r =

48a4x− 48aax3

(aa + xx)4 .

Since now it is

ddy = rdx3 +
7

12
sdx4 + etc.

because of q = 0 in the case x = a√
3

and in the same case it is r = 27
√

3
8a3 , the

second differential in question will be

ddy =
27dx2

√
3

8a3 .

EXAMPLE 2

To find the third differential of the function y = aa−xx
aa+xx in the case x = a.

As before by finding the complete differential

dy =
1
2

qdx2 +
1
6

rdx3 +
1
24

sdx4 + etc.,

since the third differential is d3y = rdx3 + 3
2 sdx4 + etc., because of

r =
48a4x− 48aax3

(aa + xx)4
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it will be x = a in the case r = 0; hence, one has to proceed to the value s
which will be

s =
48a4 − 144aaxx

(aa + xx)4 − 8x(48a4x− 48aax3)

(aa + xx)5 ;

therefore, having put x = a it will be s = − 96a4

24a8 = − 6
a4 ; therefore, in this case

it will be

d3y = −9dx4

a4 .

EXAMPLE 3

To find the differential of arbitrary order of the function y = axm + bxn in the case
x = 0.

By successively putting x + dx, x + 2dx, x + 3dx etc. instead of x the following
values of the function y will be

yI = a(x + dx)m + b(x + dx)n,

yII = a(x + 2dx)m + b(x + 2dx)n,

yIII = a(x + 3dx)m + b(x + 3dx)n,

etc.

Therefore, having put x = 0 it will be y = 0 and its differentials will be

dy = adxm + bdxn,

ddy = (2m − 1)adxm + (2n − 2)bdxn,

d3y = (3m − 3 · 2m + 3)adxm + (3n − 3 · 2n + 3)bdxn,

d4y = (4m − 4 · 3m + 6 · 2m − 4)adxm + (4n − 4 · 3n + 6 · 2n − 4)bdxn

etc.

Therefore, if the exponent n was greater than m, the second terms in these
expressions vanish with respect to the first. Nevertheless, it is to be considered,
if n was a fractional number, that the cases in which these differentials become
either imaginary or ambiguous can be distinguished. It will be convenient
reserve the further discussion of these cases for the doctrine of curves.
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